PySNN Documentation

pysnn.utils

pysnn.utils

pysnn.utils.conv2d_output_shape(h_in, w_in, kernel_size, stride=1, padding=0, dilation=1)

Determine output shape after a 2D convolutional layer.

Parameters
  • h_in – Height of input image.

  • w_in – Width of input image.

  • kernel_size – Dimensions of the convolutional kernel.

  • stride – Stride of convolutional operation.

  • padding – Padding of convolutional operation.

  • dilation – Dilation of convolutional operation.

Returns

(Height, Width) of output image.

pysnn.utils.interspike_time(spike_array)

Determine number of timesteps between all consecutive spikes.

Parameters

spike_array – 1 dimensional spike array

Returns

array with the time between all consecutive spikes.

pysnn.utils.tensor_clamp(tensor, min, max)

Clamp tensor with a separate value for each element in the input tensor.

Parameters
  • tensor – Tensor to clamp.

  • minTensor containing minimum value for each element.

  • maxTensor containing maximum value for each element.

Returns

Clamped input Tensor.